Mathématiques `6^e. Chapitre M `2 - Aires et périmètres Cours. Page `202. `1) Périmètre et aire d’une figure Définitions: --Le périmètre d’une figure est la mesure de la longueur de son contour, exprimée dans une unité de longueur donnée. --L'aire d'une figure est la mesure de sa surface, exprimée dans une unité d'aire donnée. Exemple: Voir DER en annexe. Quel est le périmètre de la figure en rose? --On compte le nombre d’unités de longueur qui permettent de mesurer la longueur de son contour. Le périmètre de la figure rose est donc de `11 unités de longueur. Quelle est l’aire de la figure rose si on prend pour unité d’aire l’aire du triangle vert, puis celle du losange bleu? --On compte le nombre d’unités d’aire qui la constituent. La figure rose est constituée de `9 triangles. Son aire est donc de `9 triangles verts. Elle est également constituée de `4,5 losanges. Son aire est donc de `4,5 losanges bleus. Remarque: L’aire d’une figure dépend de l’unité d’aire. Il faut donc préciser celle qui est choisie. Propriétés: --Deux figures non superposables peuvent avoir le même périmètre. --Deux figures non superposables peuvent avoir la même aire. --Des figures peuvent avoir la même aire mais des périmètres différents. --Des figures peuvent avoir le même périmètre mais des aires différentes. Exemple: Nomme deux figures de même aire, puis deux figures de même périmètre. --On complète le tableau suivant. Voir DER en annexe. Tableau linéarisé. Fig. `1 Périmètre: `18 `u.l. Aire: `8 `u.a. Fig. `2 Périmètre: `12 `u.l. Aire: `8 `u.a. Fig. `3 Périmètre: `18 `u.l. Aire: `11 `u.a. --Les figures `1 et `2 ont la même aire mais elles n'ont pas le même périmètre. --Les figures `1 et `3 ont le même périmètre mais elles n'ont pas la même aire. `2) Unité d’aire Règle: L’unité d’aire usuelle est le mètre carré (noté `m^2) qui représente l’aire d’un carré de côté `1 `mètre. On utilise aussi: ses multiples (`dam^2, `hm^2, `km^2) et ses sous-multiples (`dm^2, `cm^2, `mm^2). Voir DER en annexe. Exemple: --Un centimètre carré (`cm^2) est l’aire d’un carré d’un centimètre de côté. --Un millimètre carré (`mm^2) est l’aire d’un carré d’un millimètre de côté. --Dans `1 `cm^2, il y a `100 `mm^2. Page `203. Règle: Pour mesurer la surface d'un terrain, de terres agricoles ou forestières... on utilise des unités d'aire spécifiques, appelées unités de mesure agraires: --un are est égal à `100 `m^2, `1 `a `" `100 `m^2 (`1 `a `" `1 `dam^2); --un hectare est égal à `100 `ares, `1 `ha `" `100 `a `" `10'000 `m^2 (`1 `ha `" `1 `hm^2); --un centiare est égal à `1/100 d’are, `1 `ca `" `1/100 `a `" `1 `m^2 Tableau Voir DER en annexe. Remarque: --Pour passer d'une unité d'aire à l'unité immédiatement inférieure, on multiplie par `100. --Pour passer d'une unité d'aire à l'unité immédiatement supérieure, on divise par `100. Exemples: --`53 `dam^2 `" `5’300 `m^2 --`7,81 `ha `" `781 `a `" `78’100 `m^2 --`2,9 `hm^2 `" `290 `dam^2 `" `29’000 `m^2 --`0,36 `ca `" `0,0036 `a `" `0,36 `m^2 --`5 `dm^2 `" `0,05 `m^2 --`8’000 `cm^2 `" `0,8 `m^2 `" `0,8 `ca `3) Périmètre et aire de figures particulières Pour calculer un périmètre ou une aire, les dimensions doivent être exprimés dans la même unité de longueur. Voir DER en annexe. Rectangle: L: Longueur; l: largeur. Périmètre: `¨´p"2*(¨l!l) ou `¨´p"2*¨l!2*l Aire: `¨´a"¨l*l Carré: c: côté Périmètre: `¨´p"4*c Aire: `¨´a"c*c"c^2 Triangle rectangle: Périmètre: `¨´p"a!b!c Aire: `'¨´a"„a*b;/2 Triangle quelconque: h: hauteur Périmètre: `¨´p"a!b!c Aire: `¨´a"„c*h;/2 Cercle: r: rayon; d: diamètre; `¤p´"3,14 Périmètre: `¨´p"2*r*¤p ou `¨´p"d*¤p Aire: `¨´a"¤p*r*r"¤p*r^2 Page `204. Exemple `1: Quels sont le périmètre `¨´p et l'aire `¨´a d'un disque de rayon `7 `m (on demande la valeur exacte, puis une valeur approchée au centième)? On écrit la formule. `¨´p"2*r*¤p `¨´a"¤p*r*r On remplace r par `7 `m. `¨´p"2*7m*¤p `¨´a"¤p*7m*7m On obtient la valeur exacte. `¨´p"14*¤pm `¨´a"49*¤pm^2 On utilise la touche (`¤p) de la calculatrice. On obtient une valeur approchée au centième. `¨´p´"43,98 `m `¨´a´"153,94 `m^2 --Le périmètre d'un cercle de rayon `7 `m est `14*¤p `m, soit environ `43,98 `m^2 --L'aire d'un disque de rayon `7 `m est `49*¤p `m^2, soit environ `153,94 `m^2 Exemple `2: Calcule l'aire de la figure ABCDE ci-dessous. Voir DER en annexe. --On calcule séparément l'aire du rectangle ABDE et celle du triangle rectangle BCD, puis on les additionne. `¨´a?¨a¨b¨d¨e"¨a¨b*¨a¨e"4,8cm*3,6cm"17,28 `cm^2 `'¨´a?¨b¨c¨d"„¨b¨c*¨b¨d;/2"„5cm*3,6cm;/2"18cm^2/2"9 `cm^2 `¨´a?¨a¨b¨c¨d¨e"¨´a?¨a¨b¨d¨e!¨´a?¨b¨c¨d"17,28cm^2!9cm^2"26,28 `cm^2 Exercices - À toi de jouer! `1. Détermine l'aire, en nombre de carrés, de chacune de ces deux figures. Voir DER en annexe. `2. SON est un triangle rectangle en S tel que: `¨s¨o"8,04 `dm et `¨s¨n"0,93 `m. Détermine son aire. `3. Quelle est la longueur d'un cercle de diamètre `14,5 `dm? (Tu donneras la valeur exacte, puis une valeur approchée au centième près.) `4. Calcule une valeur approchée de l'aire de la surface rose au dixième de `m^2. Voir DER en annexe. Page `205. Exercices - Je m'entraine Par comptage `5. Détermine le périmètre de chaque figure ci-dessous, exprimé en unités de longueur (u.l.). Voir DER en annexe. `6. Classe ces figures dans l'ordre croissant de leur périmètre. Voir DER en annexe. `7. Détermine le périmètre de chaque figure ci-dessous, exprimé en unités de longueur (u.l.). Voir DER en annexe. `8. Reprends les figures de l'exercice précédent, puis détermine l'aire de chacune d'elles en prenant comme unité d'aire l'aire... a. du triangle rose. b. du losange bleu. `9. Détermine l'aire de chaque figure ci-dessous, en prenant comme unité d'aire... a. le carré rose. b. le triangle bleu. Voir DER en annexe. `13. Détermine un encadrement de l'aire de chacune des figures, exprimée unités d'aires. Voir DER en annexe. Page `206. Exercices - Je m'entraine Par mesure ou par calcul `16. Calcule le périmètre de chaque figure. (Attention, les figures ne sont pas dessinées en vraie grandeur.) Voir DER en annexe. Page `207. `27. Calcule l'aire de chaque triangle. (Attention, les triangles ne sont pas dessinés en vraie grandeur.) Voir DER en annexe.