LIMITES DE FONCTIONS

I. Limite d'une fonction à l'infini

1) Limite finie à l'infini

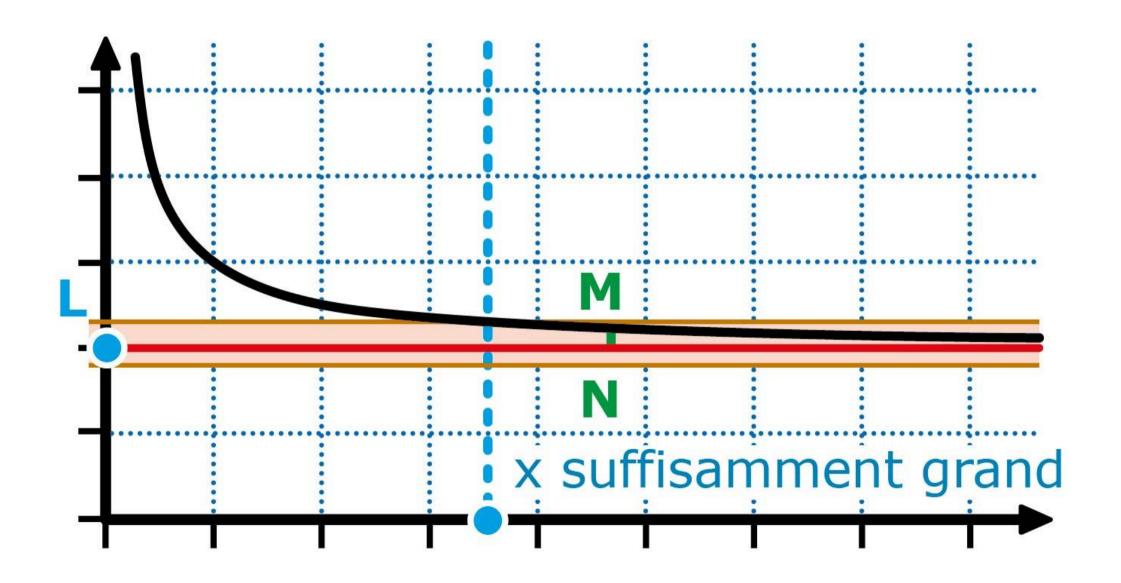
Intuitivement:

On dit que la fonction f admet pour limite L en $+\infty$ si f(x) est aussi proche de L que l'on veut pourvu que x soit suffisamment grand.

Exemple:

La fonction définie par $f(x) = 2 + \frac{1}{x}$ a pour limite 2 lorsque x tend vers $+\infty$. En effet, les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand. La distance MN tend vers 0.

Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand.



Définition:

On dit que la fonction f admet pour limite L en $+\infty$ si tout intervalle ouvert contenant L contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note :

$$\lim_{x \to +\infty} f(x) = L$$

Définitions:

— La droite d'équation y = L est asymptote à la courbe représentative de la fonction f en $+\infty$ si

$$\lim_{x \to +\infty} f(x) = L$$

— La droite d'équation y = L est asymptote à la courbe représentative de la fonction f

en –∞ si

$$\lim_{x \to -\infty} f(x) = L$$

Remarque:

Lorsque x tend vers $+\infty$, la courbe de la fonction "se rapproche" de son asymptote. La distance MN tend vers 0.

2) Limite infinie à l'infini

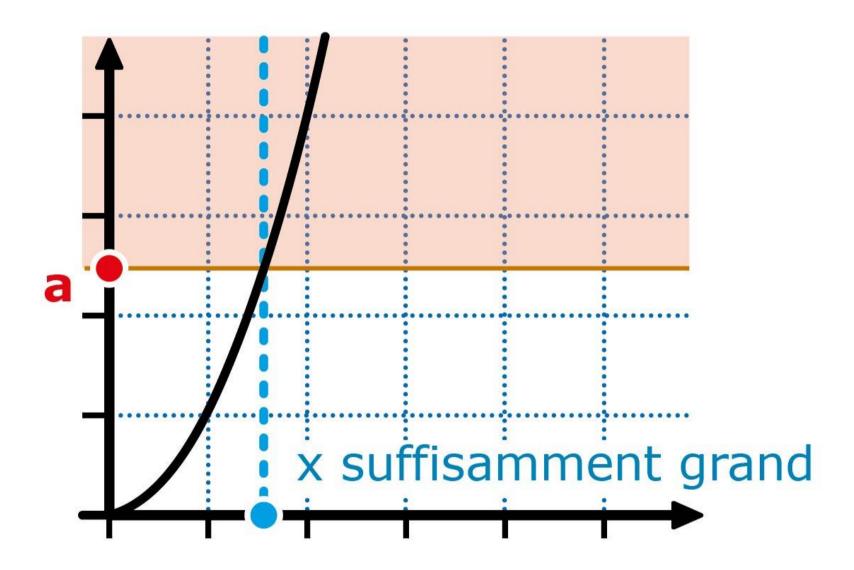
Intuitivement:

On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment grand.

Exemple : La fonction définie par $f(x) = x^2$ a pour limite $+\infty$ lorsque x tend vers $+\infty$.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment grand. Si on prend un réel a quelconque,

l'intervalle] a; $+\infty$ [contient toutes les valeurs de la fonction dès que x est suffisamment grand.



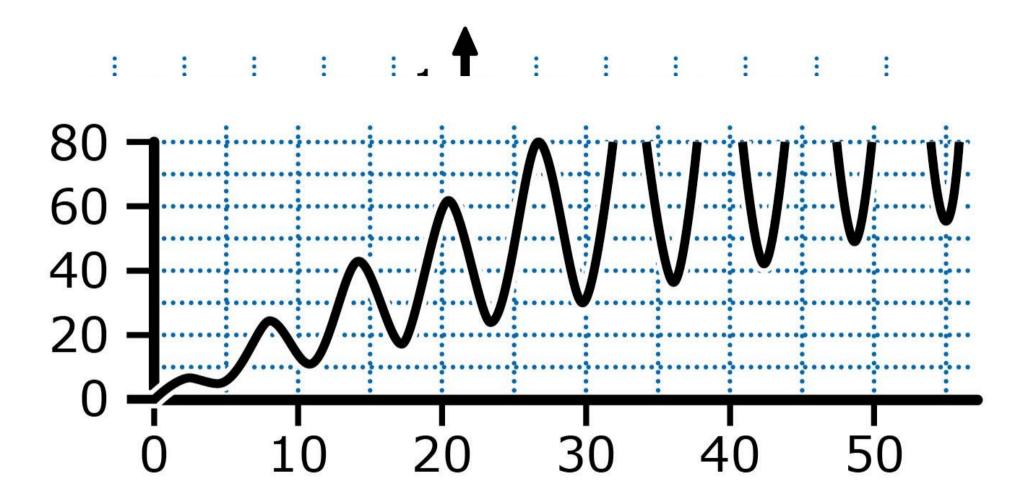
Définitions : — On dit que la fonction f admet pour limite $+\infty$ en $+\infty$ si tout intervalle] a; + ∞ [, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand et on note : $\lim f(x) = +\infty$

— On dit que la fonction f admet pour limite $-\infty$ en $+\infty$ si tout intervalle] $-\infty$; b [, b réel, contient toutes les valeurs de f (x) dès que x est suffisamment grand et on note :

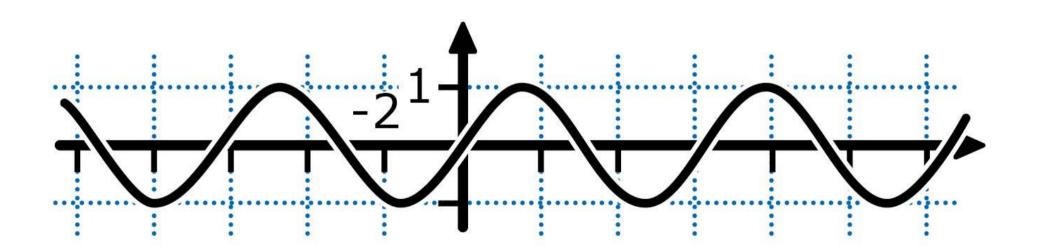
$$\lim_{x \to +\infty} f(x) = -\infty$$

Remarques:

— Une fonction qui tend vers +∞ lorsque x tend vers +∞ n'est pas nécessairement croissante.



— Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.



3) Limites des fonctions usuelles

Propriétés:

$$-\lim_{x\to+\infty}x^2=+\infty \ , \lim_{x\to-\infty}x^2=+\infty \ ,$$

$$\lim_{x \to +\infty} x^3 = +\infty , \lim_{x \to -\infty} x^3 = -\infty$$

$$-\lim_{x \to +\infty} \sqrt{x} = +\infty$$
; $\lim_{x \to +\infty} \frac{1}{x} = 0$; $\lim_{x \to -\infty} \frac{1}{x} = 0$

$$-\lim_{x\to-\infty}e^x=0\;;\;\lim_{x\to+\infty}e^x=+\infty$$

II. Limite d'une fonction en un réel A

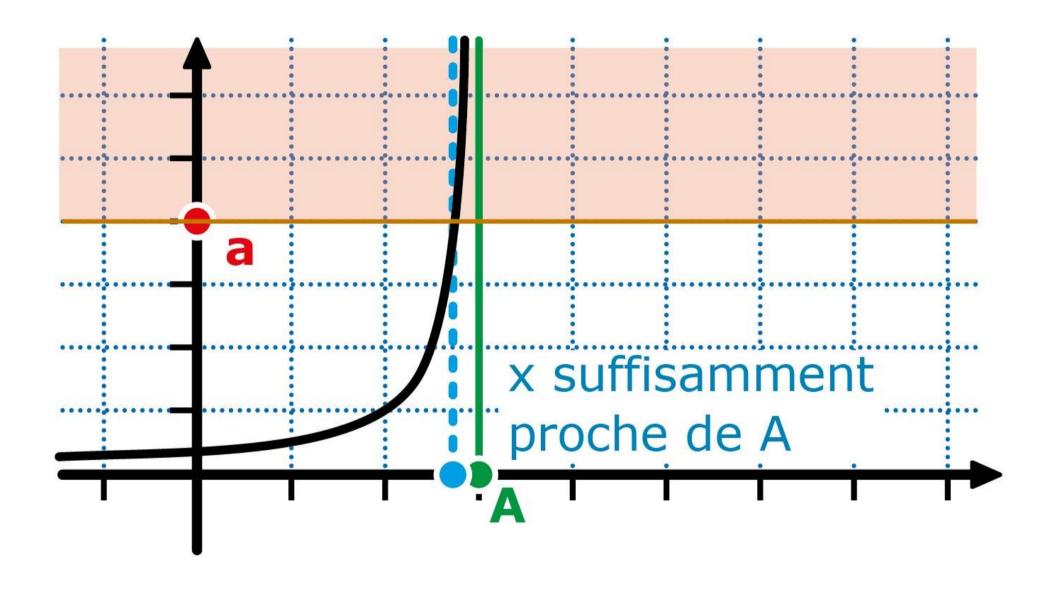
Intuitivement:

On dit que la fonction f admet pour limite $+\infty$ en A si f(x) est aussi grand que l'on veut pourvu que x soit suffisamment proche de A.

Exemple : La fonction représentée cidessous a pour limite $+\infty$ lorsque x tend vers A.

En effet, les valeurs de la fonction deviennent aussi grandes que l'on souhaite dès que x est suffisamment proche de A.

Si on prend un réel a quelconque, l'intervalle] a; $+\infty$ [contient toutes les valeurs de la fonction dès que x est suffisamment proche de A.



Définitions:

— On dit que la fonction f admet pour limite $+\infty$ en A si tout intervalle] a; $+\infty$ [, a réel, contient toutes les valeurs de f(x) dès que x est suffisamment proche de A et on note : $\lim_{x\to A} f(x) = +\infty$

– On dit que la fonction f **admet pour limite** $-\infty$ **en** A si tout intervalle] $-\infty$; b [, b réel, contient toutes les valeurs de f (x) dès que x est suffisamment proche de A et on note : $\lim_{x \to A} f(x) = -\infty$

– La droite d'équation x = A est **asymptote** à la courbe représentative de la fonction f si $\lim_{x \to A} f(x) = +\infty$ ou

$$\lim_{x \to A} f(x) = -\infty.$$

Remarque:

Certaines fonctions admettent des limites différentes en un réel A selon x > A ou x < A.

Considérons la fonction inverse définie sur

$$\mathbb{R}^*$$
 par $f(x) = \frac{1}{x}$.

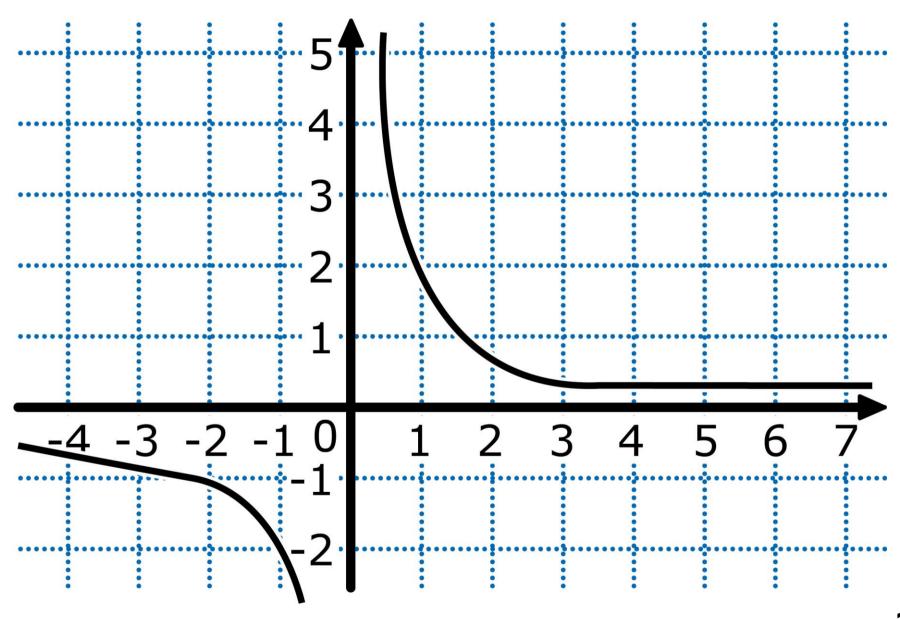
— Si x < 0, alors f(x) tend vers $-\infty$ et on note :

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty$$

— Si x > 0, alors f(x) tend vers +∞ et on note :

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

On parle de limite à gauche de 0 et de limite à droite de 0.



III. Opérations sur les limites.

 α peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1) Limite d'une somme

$\lim_{x\to\alpha}f(x)=$	L	L	L	+∞	$-\infty$	+∞
$ \lim_{x\to\alpha}g(x)= $	L'					-8
$\lim_{x\to\alpha}(f(x)+g(x))=$	L + L'	+∞	-8	+∞	-8	F.I.

2) Limite d'un produit

$\lim_{x\to\alpha}f(x)=$	L	L > 0	<i>L</i> < 0	<i>L</i> > 0	<i>L</i> < 0
$ \lim_{x\to\alpha}g(x)= $	L'	+∞	+∞	-8	-8
$\lim_{x\to\alpha}(f(x)g(x))=$	L L'	+∞	$-\infty$	$-\infty$	+∞

$\lim_{x\to\alpha}f(x)=$	+∞	$-\infty$	+∞	0
$ \lim_{x\to\alpha}g(x)= $	+8	-8	-8	+∞ ou -∞
$\lim_{x\to\alpha}(f(x)g(x))=$	+8	+∞	-8	F.I.

3) Limite d'un quotient

$ \lim_{x\to\alpha}f(x) = $	L	L	$L > 0$ ou $+\infty$
$\lim_{x\to\alpha}g(x)=$	<i>L'</i> ≠0	+∞ ou -∞	0 avec $g(x) > 0$
$\lim_{x\to\alpha}\frac{f(x)}{g(x)}=$	$rac{L}{L'}$	0	+∞

$ \lim_{x\to\alpha}f(x)= $	L < 0 ou	L > 0 ou	$L < 0$ ou $-\infty$
	$-\infty$	+∞	
$\lim_{x\to\alpha} g(x)$	0 avec	0 avec	0 avec
=	g(x) > 0	g(x) < 0	g(x) < 0
$\lim_{x\to\alpha}\frac{f(x)}{g(x)}$		-8	+
=			

$\lim_{x\to\alpha}f(x)=$	0	+∞	+∞	$-\infty$	$-\infty$
$\lim_{x\to\alpha}g(x)=$	0	L' > 0	L' < 0	L' > 0	L' < 0
$\lim_{x\to\alpha}\frac{f(x)}{g(x)}=$	F.I.	+∞	-8	-8	+∞

$\lim_{x\to\alpha}f(x)=$	+∞ ou -∞
$ \lim_{x\to\alpha}g(x)= $	+∞ ou -∞
$ \lim_{x\to\alpha}\frac{f(x)}{g(x)} = $	F.I.

Exemple:

$$\lim_{x \to -\infty} (x - 5)(3 + x^2) ?$$

$$\lim_{x \to -\infty} (x - 5) = -\infty \text{ et } \lim_{x \to -\infty} (3 + x^2) = +\infty$$

D'après la règle sur la limite d'un produit :

$$\lim_{x \to -\infty} (x - 5)(3 + x^2) = -\infty$$

Remarque:

Comme pour les suites, on rappelle que les quatre formes indéterminées sont, par abus d'écriture :

"\infty - \infty", "0 \times \infty", "
$$\frac{\infty}{\infty}$$
" et " $\frac{0}{0}$ ".

Exercice 1 : Lever une forme indéterminée sur les fonctions polynômes et rationnelles

Calculer:

1)
$$\lim_{x \to +\infty} (-3x^3 + 2x^2 - 6x + 1)$$

2)
$$\lim_{x \to +\infty} \frac{2x^2 - 5x + 1}{6x^2 - 5}$$

3)
$$\lim_{x \to -\infty} \frac{3x^2 + 2}{4x - 1}$$

Exercice 2: Lever une forme indéterminée sur les fonctions avec des radicaux

Calculer:

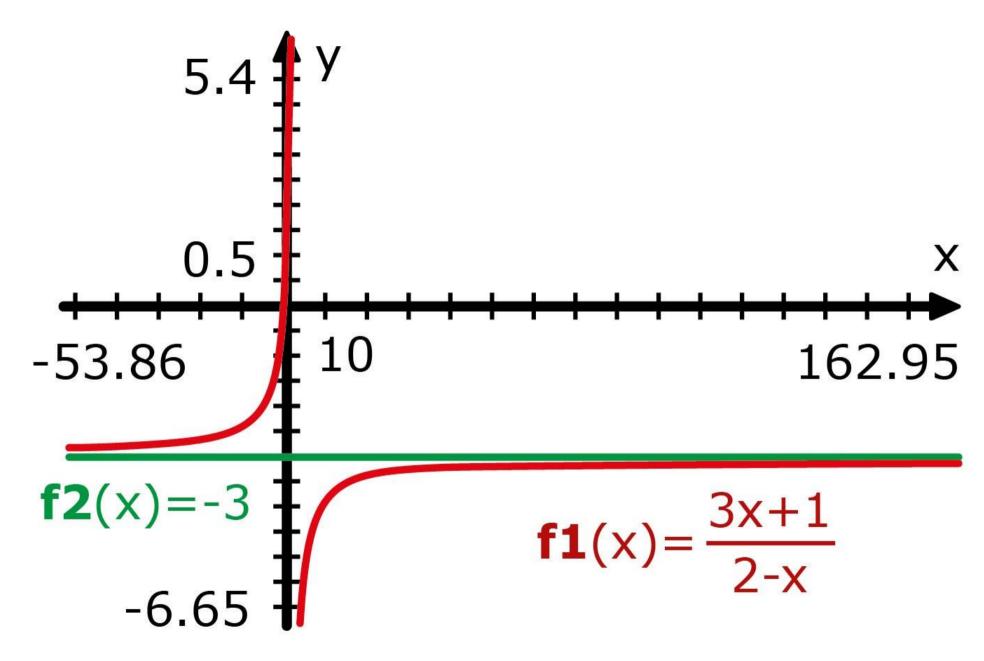
$$1) \lim_{x \to +\infty} (\sqrt{x+1} - \sqrt{x})$$

2)
$$\lim_{x \to 5} \frac{\sqrt{x-1}-2}{x-5}$$

Exercice 3 : Déterminer une asymptote **1)** Soit *f* la fonction définie sur

]
$$-\infty$$
; 2 [U] 2; $+\infty$ [Par $f(x) = \frac{3x+1}{2-x}$.

Démontrer que la droite d'équation y = -3 est asymptote horizontale à la courbe représentative de f en $+\infty$.



Il faut donc démontrer que

$$\lim_{x \to +\infty} \frac{3x+1}{2-x} = -3 :$$

$$\frac{3x+1}{2-x} = \frac{x}{x} \times \frac{3+\frac{1}{x}}{\frac{2}{x}-1} = \frac{3+\frac{1}{x}}{\frac{2}{x}-1}$$

Or
$$\lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{2}{x} = 0$$
 donc

$$\lim_{x \to +\infty} \left(3 + \frac{1}{x} \right) = 3 \text{ et } \lim_{x \to +\infty} \left(\frac{2}{x} - 1 \right) = -1.$$

Et donc par quotient de limites

$$\lim_{x \to +\infty} \frac{3 + \frac{1}{x}}{\frac{2}{x} - 1} = \frac{3}{-1} = -3$$

Et donc
$$\lim_{x \to +\infty} f(x) = -3$$
.

2) Soit g la fonction définie sur

]
$$-\infty$$
; 4 [U] 4; $+\infty$ [par $(x) = \frac{2x}{x-4}$

Démontrer que la droite d'équation x=4 est asymptote verticale à la courbe représentative de g.

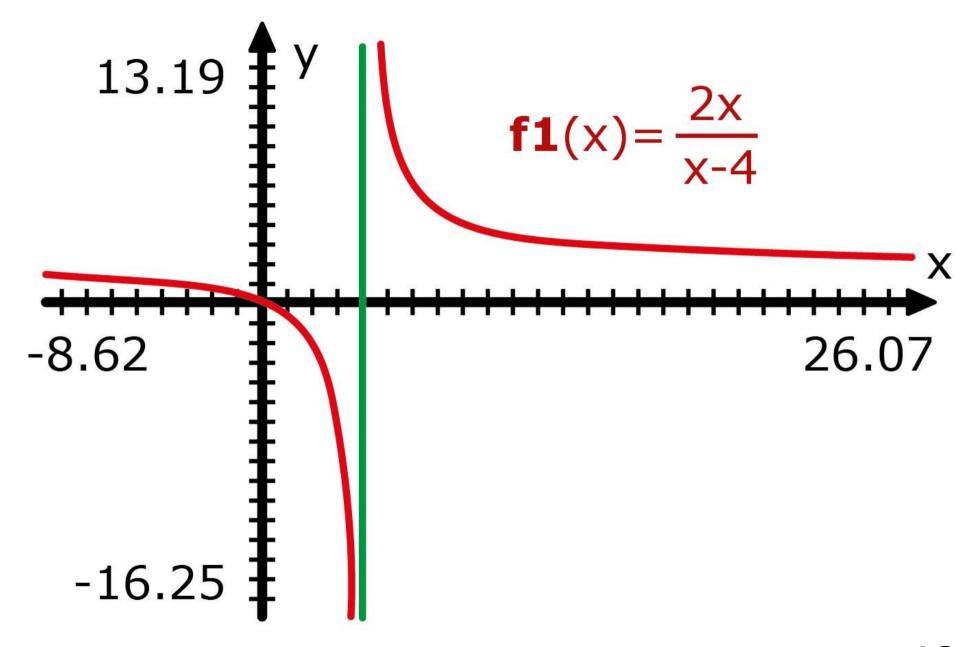
Il faut donc démontrer que la limite de la fonction g possède une limite infinie en 4.

$$-\lim_{\substack{x \to 4 \\ x < 4}} (x - 4) = 0 \text{ et } \lim_{\substack{x \to 4 \\ x \to 4}} 2x = 8$$

Donc
$$\lim_{\substack{x \to 4 \\ x < 4}} \frac{2x}{x - 4} = -\infty \text{ car } x - 4 < 0$$

$$-\lim_{\substack{x \to 4 \\ x > 4}} (x - 4) = 0 \text{ et } \lim_{\substack{x \to 4 \\ x > 4}} 2x = 8$$

Donc
$$\lim_{\substack{x \to 4 \ x > 4}} \frac{2x}{x-4} = +\infty \text{ car } x - 4 > 0$$



On en déduit que la droite d'équation x=4 est asymptote verticale à la courbe représentative de g.

Propriété:

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

IV. Limite d'une fonction composée

Exemple : Soit la fonction f définie sur

$$\int \frac{1}{2}$$
; $+ \infty \left[\text{ par } (x) = \sqrt{2 - \frac{1}{x}} \right]$

On souhaite calculer la limite de la fonction f en $+\infty$

On considère les fonctions u et v définie

par :
$$u(x) = 2 - \frac{1}{x}$$
 et $v(x) = \sqrt{x}$

Alors : f(x) = v(u(x)). On dit alors que f est la **composée** de la fonction u par la fonction v.

Or,
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 donc $\lim_{x \to +\infty} u(x) = 2$

Donc
$$\lim_{x \to +\infty} \sqrt{2 - \frac{1}{x}} = \lim_{x \to +\infty} \sqrt{u(x)}$$

$$= \lim_{x \to 2} \sqrt{x}$$

$$= \sqrt{2}$$
D'où $\lim_{x \to +\infty} f(x) = \sqrt{2}$

Théorème:

A,B,C peuvent désigner $+\infty$, $-\infty$ ou un nombre réel.

Si
$$\lim_{x \to A} u(x) = B$$
 et $\lim_{x \to B} v(x) = C$ alors

$$\lim_{x \to A} v(u(x)) = C$$

- Admis -

Méthode : Déterminer la limite d'une fonction composée

Calculer
$$\lim_{x \to +\infty} \sqrt{\frac{4x-1}{2x+3}}$$

V. Limites et comparaisons

1) Théorème de comparaison

Théorème : Soit f et g deux fonctions définies sur un intervalle $]a; +\infty[$, a réel, telles que pour tout x > a, on a $f(x) \le g(x)$ — Si $\lim_{x \to +\infty} f(x) = +\infty$ alors $\lim_{x \to +\infty} g(x) = +\infty$ (figure 1)

- Si
$$\lim_{x \to +\infty} g(x) = -\infty$$
 alors $\lim_{x \to +\infty} f(x) = -\infty$

(figure 2)

- Si
$$\lim_{x \to -\infty} f(x) = +\infty$$
 alors $\lim_{x \to -\infty} g(x) = +\infty$

(figure 3)

- Si
$$\lim_{x \to -\infty} g(x) = -\infty$$
 alors $\lim_{x \to -\infty} f(x) = -\infty$

(figure 4)

Propriétés (croissances comparées):

a) $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ et pour tout entier n,

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

b) $\lim_{x\to-\infty} xe^x = 0$ et pour tout entier n,

$$\lim_{x \to -\infty} x^n e^x = 0$$

Par abus de langage, on pourrait dire que la fonction f pousse la fonction g vers $+\infty$ pour des valeurs de x suffisamment grandes.

Figure 1

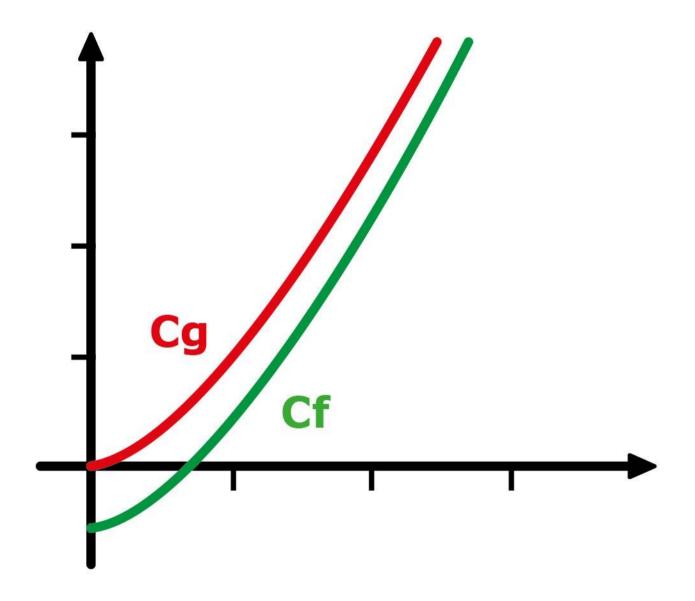


Figure 2

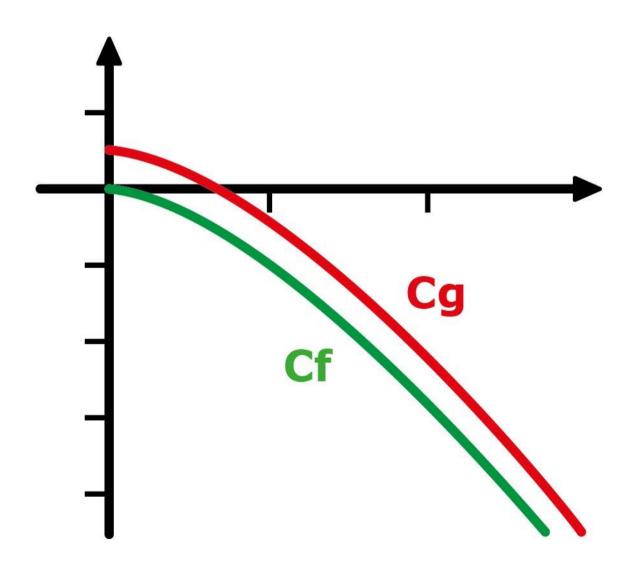


Figure 3

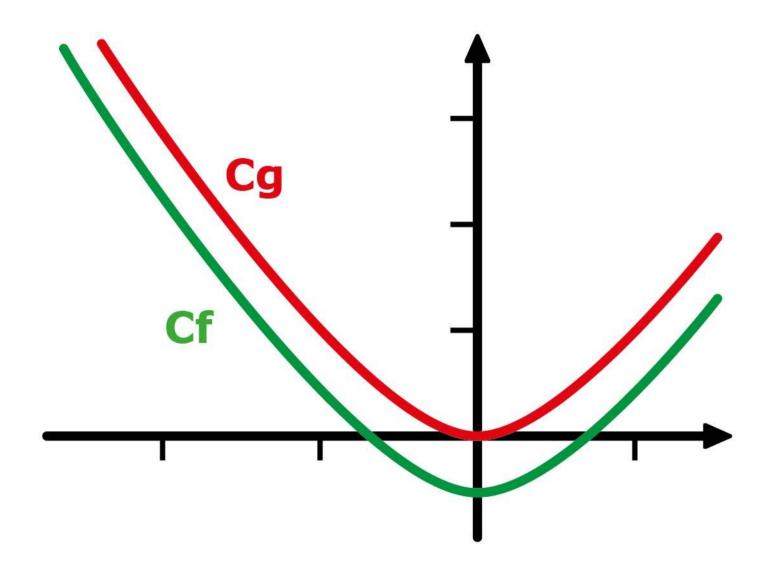
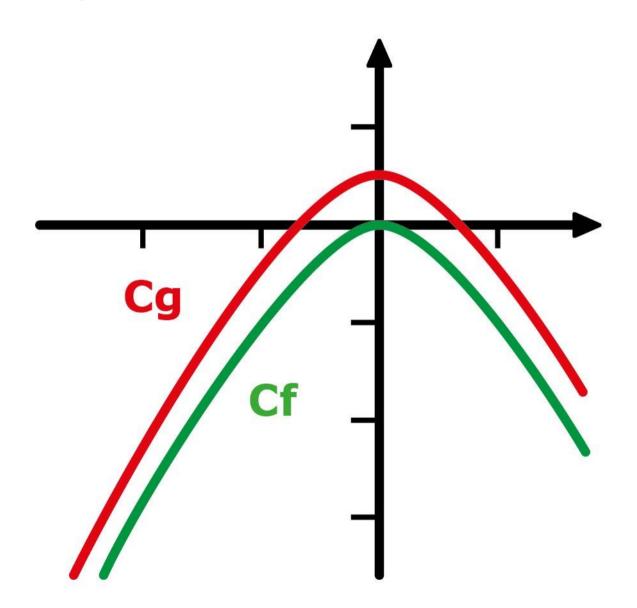


Figure 4



Démonstration dans le cas de la figure 1 :

 $\lim_{x \to +\infty} f(x) = +\infty$ donc tout intervalle $\lim_{x \to +\infty} f(x) = +\infty$ [, m réel, contient toutes les valeurs de f(x) dès que x est suffisamment grand, soit : $f(x) \ge m$

Or, dès que x est suffisamment grand, on

a
$$f(x) \leq g(x)$$

Donc dès que x est suffisamment grand,

on a :
$$g(x) \ge m$$

Et donc
$$\lim_{x \to +\infty} g(x) = +\infty$$

2) Théorème d'encadrement

Théorème des gendarmes : Soit f , g et

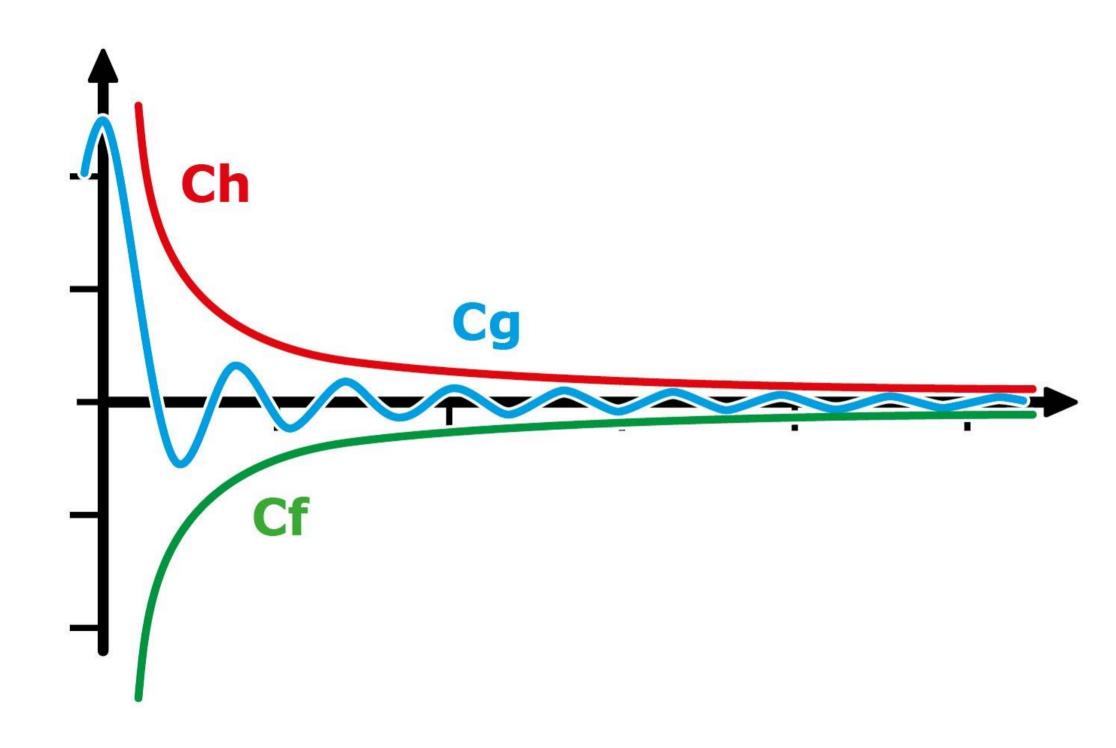
h trois fonctions définies sur un intervalle

a; $+ \infty$ [, a réel, telles que pour tout x > a,

on a
$$f(x) \le g(x) \le h(x)$$

Si
$$\lim_{x \to +\infty} f(x) = L$$
 et $\lim_{x \to +\infty} h(x) = L$ alors $\lim_{x \to +\infty} g(x) = L$

Remarque : On obtient un théorème analogue en $-\infty$



Par abus de langage, on pourrait dire que les fonctions f et h (les gendarmes) se resserrent autour de la fonction g pour des valeurs de x suffisamment grandes pour la faire tendre vers la même limite. Ce théorème est également appelé le théorème du sandwich.

Méthode : Utiliser les théorèmes de comparaison et d'encadrement Calculer :

$$\mathbf{1)} \lim_{x \to +\infty} (x + \sin x)$$

$$2) \lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1}$$

1) $\lim_{x\to +\infty} \sin x$ n'existe pas. Donc sous la

forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Pour tout x, $-1 \le \sin x$ donc $x - 1 \le x + \sin x$

Or
$$\lim_{x\to +\infty} (x-1) = +\infty$$
 donc d'après le

théorème de comparaison,

$$\lim_{x \to +\infty} (x + \sin x) = +\infty$$

2) $\lim_{x\to +\infty} \cos x$ n'existe pas. Donc sous la

forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Pour tout x, $-1 \le \cos x \le 1$ donc

 $-x \le \cos x \le x \cot x > 0$. Et donc

$$-\frac{x}{x^2+1} \le \frac{x \cos x}{x^2+1} \le \frac{x}{x^2+1}$$

Ou encore

$$-\frac{x}{x^2} \le -\frac{x}{x^2 + 1} \le \frac{x \cos x}{x^2 + 1} \le \frac{x}{x^2 + 1} \le \frac{x}{x^2 + 1} \le \frac{x}{x^2}$$
Soit $-\frac{1}{x} \le \frac{x \cos x}{x^2 + 1} \le \frac{1}{x}$

Or
$$\lim_{x \to +\infty} \left(-\frac{1}{x} \right) = \lim_{x \to +\infty} \left(\frac{1}{x} \right) = 0$$
 alors d'après

le théorème des gendarmes, on a

$$\lim_{x \to +\infty} \frac{x \cos x}{x^2 + 1} = 0$$