FONCTION EXPONENTIELLE

I. Définition de la fonction exponentielle

Propriété et définition : Il existe une

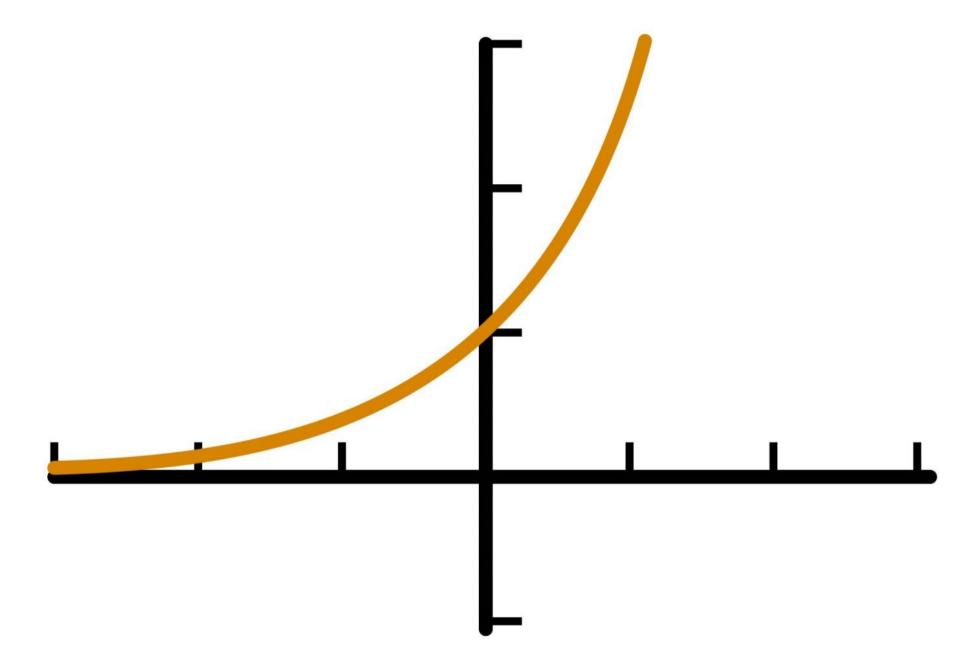
unique fonction f dérivable sur $\mathbb R$ telle que

f' = f et f(0) = 1. Cette fonction s'appelle

fonction exponentielle et se note exp

Conséquence : exp(0) = 1

Avec la calculatrice, il est possible d'observer l'allure de la courbe représentative de la fonction exponentielle :



Remarque: On verra dans le paragraphe II. que la fonction exponentielle est croissante. Mais sa croissance est très rapide, ainsi exp(21) dépasse le milliard. Pour des valeurs de x de plus en plus grandes, la fonction exponentielle prend des valeurs de plus en plus grandes.

Propriété: La fonction exponentielle est strictement positive sur \mathbb{R} .

II. Étude de la fonction exponentielle1) Dérivabilité

Propriété: La fonction exponentielle est dérivable sur \mathbb{R} et $(\exp x)' = \exp x$

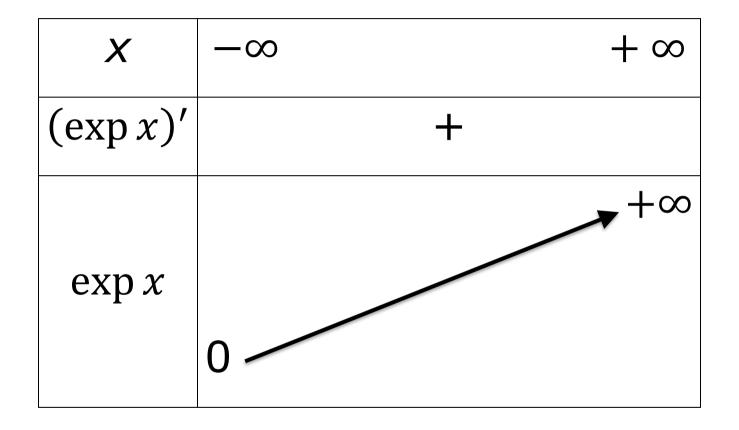
2) Variations

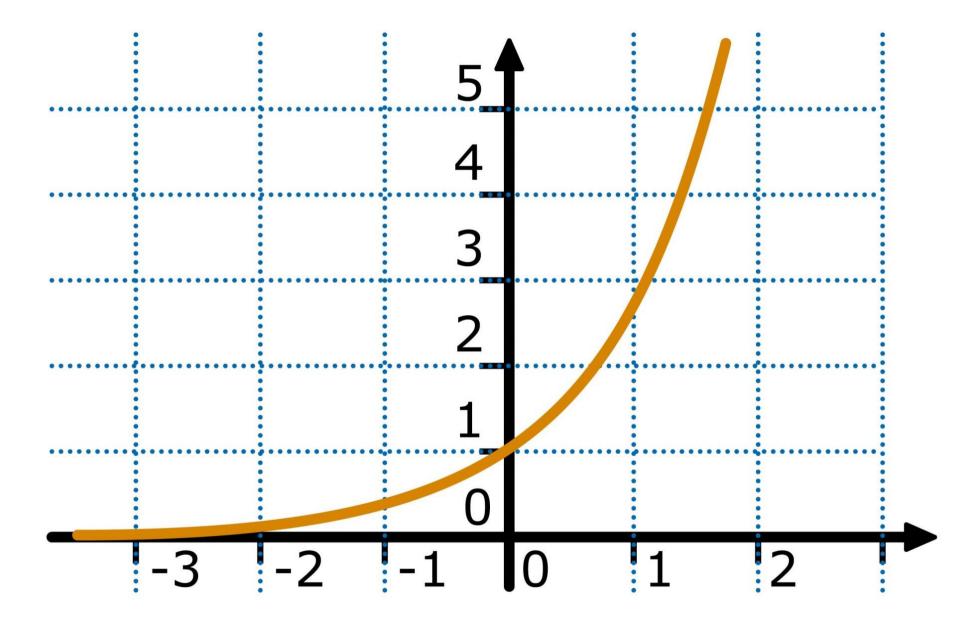
Propriété : La fonction exponentielle est strictement croissante sur \mathbb{R} .

En effet, $(\exp x)' > 0$ car $(\exp x)' = \exp x > 0$.

3) Courbe représentative

On dresse le tableau de variations de la fonction exponentielle :





III. Propriété de la fonction exponentielle

1) Relation fonctionnelle

Théorème: Pour tous réels x et y, on a:

$$\exp(x + y) = \exp x \exp y$$

Remarque: Cette formule permet de transformer une somme en produit et réciproquement.

Corollaires : Pour tous réels x et y, on a :

a)
$$\exp(-x) = \frac{1}{\exp x}$$
 ou encore

$$\exp x \exp(-x) = 1$$

b)
$$\exp(x - y) = \frac{\exp x}{\exp y}$$

c) $\exp(nx) = (\exp x)^n$ avec $n \in \mathbb{N}$

Démonstration du a et b :

a)
$$\exp x \exp(-x) = \exp(x - x) = \exp(0) = 1$$

b)
$$\exp(x-y) = \exp(x+(-y))$$

$$= \exp x \exp(-y) = \exp x \frac{1}{\exp x} = \frac{\exp x}{\exp y}$$

2) Le nombre e

Définition : L'image de 1 par la fonction exponentielle est notée *e*.

On a ainsi $\exp 1 = e$

Remarque : Avec la calculatrice, on peut obtenir une valeur approchée de *e*.

 e^1 2,718281828

Notation nouvelle:

$$\exp x = \exp(x \times 1) = (\exp 1)^x = e^x$$

On note pour tout x réel, $\exp x = e^x$

Comme π , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique.

Ses premières décimales sont :

 $e \approx 2,7182818284 5904523536$

0287471352 6624977572 4709369995

9574966967 6277240766 3035354759

4571382178 5251664274...

Le nombre *e* est également un nombre transcendant. On dit qu'un

nombre est transcendant s'il n'est solution d'aucune équation à coefficients entiers. Le nombre $\sqrt{2}$ par exemple, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation $x^2 = 2$. Un tel nombre est dit «algébrique».

Le premier à s'intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard Euler (1707; 1783), cidessus. C'est à lui que nous devons le nom de ce nombre. Non pas qu'il s'agisse de l'initiale de son nom mais peut être

car e est la première lettre du mot exponentiel.

Dans « Introductio in

Analysininfinitorum » publié en

1748, Euler explique que:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

Rappelons que par exemple 5! se lit "factoriel 5" et est égal à 1 x 2 x 3 x 4 x 5. Par cette formule, il obtient une estimation de e avec 18 décimales exactes. Nous devons aussi à Euler la démonstration de l'irrationalité de e.

Avec cette nouvelle notation, on peut ainsi résumer l'ensemble des propriétés de la fonction exponentielle:

Propriétés: Pour tous réels x et y, on a :

a)
$$e^0 = 1$$
 et $e^1 = e^2$

a)
$$e^0 = 1$$
 et $e^1 = e$
b) $e^x > 0$ et $(e^x)' = e^x$

c)
$$e^{x+y} = e^x e^y e^{x-y} = \frac{e^x}{e^y} e^{-x} = \frac{1}{e^x} (e^x)^n$$

$$=e^{nx}$$
,

avec $n \in \mathbb{N}$.

Méthode: Dériver une fonction

exponentielle

Dériver les fonctions suivantes :

a)
$$f(x) = 4x - 3e^x$$

b)
$$g(x) = (x - 1)e^x$$

c)
$$h(x) = \frac{e^x}{x}$$

a)
$$f'(x) = 4 - 3e^x$$

b)
$$g'(x) = 1 \times e^x + (x - 1)e^x$$

= $e^x + xe^x - e^x$
= xe^x

c)
$$h'(x) = \frac{e^x \times x - e^x \times 1}{x^2} = \frac{e^x (x-1)}{x^2}$$

Méthode: Simplifier les écritures

Simplifier l'écriture des nombres suivants :

$$A = \frac{e^7 \times e^{-4}}{e^{-5}}$$

$$B = (e^5)^{-6} \times e^{-3}$$

$$C = \frac{1}{(e^{-3})^2} + \frac{(e^4)^{-1}}{e^2 \times e^{-6}}$$

$$D = \frac{(e^{2x})^3}{e^{3x+1} \times e^{-x-1}}$$

Propriétés : Pour tous réels a et b, on a :

a)
$$e^a = e^b \iff a = b$$

a)
$$e^a = e^b \iff a = b$$

b) $e^a < e^b \iff a < b$

Méthode: Résoudre une équation ou une inéquation

a) Résoudre dans R l'équation

$$e^{x^2 - 3} - e^{-2x} = 0.$$

b) Résoudre dans \mathbb{R} l'inéquation $e^{4x-1} \geq 1$.

a)
$$e^{x^2-3}-e^{-2x}=0$$

$$\Leftrightarrow e^{x^2-3} = e^{-2x}$$

$$\Leftrightarrow x^2 - 3 = -2x$$

$$\Leftrightarrow x^2 + 2x - 3 = 0$$

$$\Delta = 2^2 - 4 \times 1 \times (-3) = 16$$

Donc
$$x = \frac{-2 - \sqrt{16}}{2 \times 1} = -3$$
 ou $x = \frac{-2 + \sqrt{16}}{2 \times 1} = 1$

Les solutions sont -3 et 1.

b)
$$e^{4x-1} \ge 1$$

$$\Leftrightarrow e^{4x-1} \ge e^0$$

$$\Leftrightarrow 4x - 1 \ge 0 \Leftrightarrow x \ge \frac{1}{4} \Leftrightarrow x \ge \frac{1}{4}$$

L'ensemble des solutions est l'intervalle

$$\left[\frac{1}{4};+\infty\right[$$

Méthode: Étudier une fonction

exponentielle

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = (x+1)e^x.$$

a) Calculer la dérivée de la fonction f.

- b) Dresser le tableau de variations de la fonction *f*.
- c) Déterminer une équation de la tangente à la courbe au point d'abscisse 0.
- d) Tracer la courbe représentative de la fonction f en s'aidant de la calculatrice.

a)
$$f'(x) = e^x + (x+1)e^x = (x+2)e^x$$

b) Comme $e^x > 0$, f'(x)est du signe de x + 2.

f est donc décroissante sur l'intervalle $]-\infty$; -2] et croissante sur l'intervalle $[-2; +\infty[$.

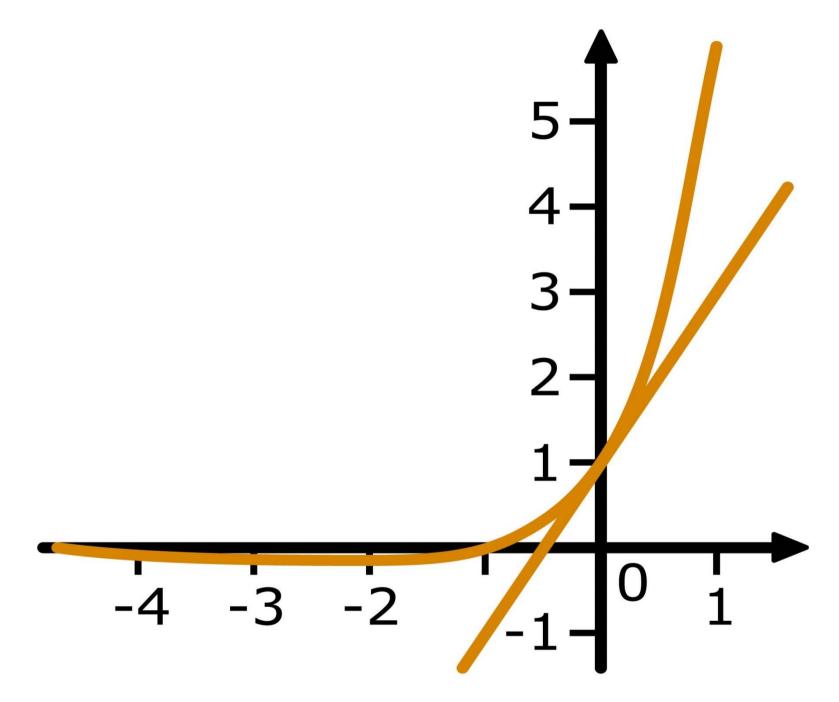
On dresse le tableau de variations :

$$\begin{array}{c|cccc}
x & -\infty & -2 & +\infty \\
f'(x) & - & 0 & + \\
\end{array}$$

$$f(x) & -e^{-2}$$

c)
$$f(0) = 1$$
 et $f'(0) = 2$

Une équation de la tangente à la courbe en 0 est donc : y = f'(0)(x - 0) + f(0), soit : y = 2x + 1 d)



IV. Fonctions de la forme $t \mapsto e^{kt}$

1) Variations

Propriété:

La fonction $t \mapsto e^{kt}$, avec $k \in \mathbb{Z} \setminus \{0\}$, est dérivable sur \mathbb{R} . Sa dérivée est la fonction $t \mapsto ke^{kt}$.

Démonstration:

On rappelle que la dérivée d'une fonction composée $t \mapsto g(at + b)$ est

$$t \mapsto ag'(at+b).$$

En considérant $g(t) = e^t$, a = k et b = 0, on

$$a:(e^{kt})'=ke^{kt}.$$

Exemple:

Soit $f(t) = e^{-4t}$ alors $f'(t) = -4e^{-4t}$.

Propriété:

Si k > 0: la fonction $t \mapsto e^{kt}$ est croissante.

Si k < 0: la fonction $t \mapsto e^{kt}$ est

décroissante.

Démonstration:

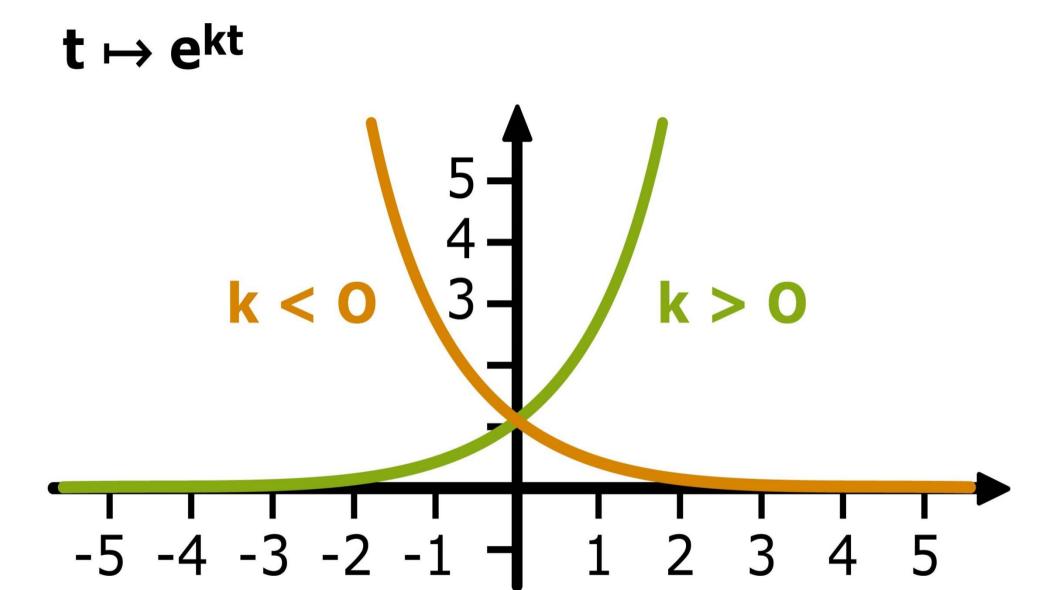
On a : $(e^{kt})' = ke^{kt}$. Or, $e^{kt} > 0$ pour tout réel t et tout entier relatif k non nul.

Donc le signe de la dérivée $t \mapsto ke^{kt}$ dépend du signe de k.

Si k>0 alors la dérivée est positive est donc la fonction $t\mapsto e^{kt}$ est croissante.

Si k< 0 alors la dérivée est négative est donc la fonction $t \mapsto e^{kt}$ est décroissante.

2) Représentation graphique



Méthode: Étudier une fonction $t \mapsto e^{kt}$ dans une situation concrète Suite à une infection, le nombre de bactéries contenues dans un organisme en fonction du temps (en heures) peut être modélisé par la fonction f définie sur [0;10]

et telle que f'(t) = 0.14f(t).

1) Montrer que la fonction f définie sur

[0; 10] par $f(t) = Ae^{0.14t}$ convient.

2) On suppose que f(0) = 50000.

Déterminer A.

3) Déterminer les variations de f sur

[0 ; 10].

- 4) a) À l'aide de la calculatrice, donner un arrondi au millier près du nombre de bactéries après 3h puis 5h30.
- b) À l'aide de la calculatrice, déterminer au bout de combien de temps le nombre de bactéries a-t-il doublé. Arrondir à l'heure près.

1)
$$f'(t) = A \times 0.14e^{0.14t} = 0.14 \times Ae^{0.14t}$$

= 0.14 $f(t)$.

La fonction f définie sur [0; 10] par $f(t) = Ae^{0,14t}$ vérifient bien l'égalité

f'(t) = 0.14f(t) donc elle convient.

2)
$$f(0) = Ae^{0.14 \times 0} = Ae^0 = A$$
.

Donc, si $f(0) = 50\,000$, on a : $A = 50\,000$.

Une expression de la fonction f est donc : $f(t) = 50 \ 000e^{0.14t}.$

3) Comme k = 0.14 > 0, on en déduit que la fonction $x \mapsto e^{0.14t}$ est strictement croissante sur [0; 10]. Il en est de même pour la fonction f.

4) a)
$$f(3) = 50\ 000e^{0.14\times3} = 50\ 000e^{0.42}$$

$\approx 76\,000$

$$f(5,5) = 50\ 000e^{0,14\times5,5} = 50\ 000e^{0,77}$$
$$\approx 108\ 000$$

Après 3h, l'organisme contient environ 76 000 bactéries.

Après 5h30, l'organisme contient environ 108 000 bactéries.

b) Le nombre de bactéries a doublé à partir de 100 000 bactéries, soit au bout d'environ 5h.

X	Y ₁
4,89	99 149
4,9	99 288
4,91	99 427
4,92	99 566
4,93	99 706

4,94	99 845
X	Y ₁
4,95	99 985
4,96	100 125
4,97	100 266
4,98	100 406

4,99 100 547